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A simple scatter model is used to analytically derive the point spread function (PSF) for scattered
radiation in diagnostic radiology. The resulting equation is a function of four physical parameters;
object thickness, object-to-detector distance (air gap), and the linear attenuation coefficients for
both primary and scatter radiation. Though the model is based upon single scattering, it is shown
that by reducing the scatter attenuation coeflicient the analytic model compares well to the
multiple scattering PSF determined using Monte Carlo analysis.

I. INTRODUCTION

Scattered radiation can significantly deteriorate image quali-
ty in diagnostic radiology. Understanding the distribution
and intensity of scattered radiation is an important step in
designing techniques to reduce the detrimental effects of
scatter on image quality. Computerized radiographic images
have become more commonplace as that technology ad-
vances, and as a result many computer-based techniques for
the correction of scattered radiation effects have emerged.'”
Common to many such techniques, is the requisite that the
scatter point spread function be known. To illustrate this
point in one class of computer-based scatter correction, de-
convolution,'* the scatter point spread function (PSF) is
used to mathematically determine a deconvolution filter.
Though this approach is only an approximation, it is capable
of significant contrast enhancement in many clinical situa-
tions. However, the scatter PSF is known to vary depending
on the imaging geometry; specifically, the object thickness
and object-to-detector distance (air gap) can have great ef-
fect on the shape and amplitude of the scatter PSF, as shown
in a companion paper® employing Monte Carlo techniques.
Therefore, the ability to synthesize a scatter PSF based on
the patient-specific imaging parameters would aid this ap-
proach and provide for a potentially robust scatter correc-
tion technique. We point out that scatter deconvolution is an
experimental technique, and has its limitations.

In this paper, a single scatter approximation is derived for
the scatter PSF in diagnostic radiology. The resultant equa-
tion is a function of four physical parameters; object thick-
ness, air gap, and the linear attenuation coeflicients for pri-
mary (u,) and scattered (x,) radiation. The first two
parameters are clearly related to the object (or patient) be-
ing imaged, while the latter two are related to both the object
being imaged and to the x-ray beam spectrum used. The
model] assumes a homogeneous object consisting of water-
equivalent tissue, and thus inhomogeneities such as bone or
gas are not considered. The PSF resuits will be compared
with the PSF generated by Monte Carlo simulations, de-
scribed in the previous companion article.
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Il. THEORY

Let the analytically derived scatter PSF be represented by
g(r). Radial symmetry exists because the probability of radi-
al scattering at an angle ¢ is uniform from 0° to 360°.” We
integrate g(r) over ¢, and get the function g’(r), where:

2
g =f g(ryrdg, (N
$=0
and thus
g(r) = (172nr)g'(r). (2)

For the most part, we will deal with the modified scatter
PSF, g'(r), where g’ (r) is related to the scatter PSF g(r) by
Eq. (2). The reason for this is to decouple the relatively
strong 1/2mr term, which can obscure the subtleties of the
g'(r) term. The (modified) PSF g’'(r) is derived assuming
single scattering in a homogeneous scatter medium, separat-
ed from the detector by a uniform air gap. Spectral effects are
not considered. Though the function derived is an approxi-
mation to the single scatter PSF, it may be applicable to the
more general multiple scattering case through modification
of the parameter y,. This will be discussed later. The terms
used in the following discussion are defined in Fig. 1. Four
components contribute to the function g'(7): (1) the scatter
source intensity, (2) the probability of scattering at a given
angle, (3) scatter attenuation, and (4) the change in the
detector cross section as a function of angle. These will be
dealt with in order.

(1) The scatter cross section of a thin slab of homoge-
neous material (water) is the same regardless of its depth in
the object, assuming negligible beam hardening. Since this
probability is constant with depth, the resulting scatter in-
tensity emitted from such a slab is proportional to the x-ray
intensity incident on that slab. The intensity of scatter is
proportional to the primary beam intensity at a depth
(z—3);

Iszklexp[—,up(t—s)], 3)

where k, is a constant dealing with the incident primary
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FIG. 1. The geometric setup used in deriving the analytic scatter PSF, g'(r).
Photons enter the object normally at 8. Object thickness: #; air gap: g; radial
distance: r; scatter angle: 6; bottom of object to scatter focus: s; path length
of scatter through object: a.

intensity and u, is the effective linear attenuation coefficient
of the primary beam.

(2) Assuming a small Rayleigh scattering component
(discussed later), the collision cross section per solid angle is
given by the Klein—Nishina formula:

ﬂ:kz(i)z(i+ﬁ_sinze), @)
dQ vo/ \vg V¥

where k, is a constant term” and v, and v are the frequencies
of the incident and scattered photons, respectively. The
cross section as a function of scattering angle ¢ is found by
substituting d} = 27 sinéd d6;

-ﬂ1=27@(1)Kli+1b—sm29)gne. (5)
de vo/ \vg v

In diagnostic radiology, to a first approximation the loss in
scattered photon energy and hence the change in frequency
is small, such that v~v,. For example, a 100-keV photon
scattered at 45° loses only 5% of its energy. This simplifica-

tion reduces Eq. (5) to

do . .

= =27k,(2sin 8 — sin* 9). (6)

dé 2

(3) The scatter released at a given depth (¢ — s) will tran-
sit a path length « through the object to reach the detector at

a radial distance r. The attenuation due to this is given by

attenuation = exp( — u,a), (7)
where , is the effective attenuation coefficient of scattered
radiation, and:

a=[s/Gs+I7+ s+ 87"

(4) For a detector element dr at a distance r from the
origin,

.ﬁ:iMf(’ )

dr dr s+g

It is noted that d6 is used instead of the solid angle df) be-
cause the r axis represents the integrated annular area, as
discussed earlier. This derivative yields:

27 -1
oG]
dr s+g s+ g
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Combining Eqgs. (3), (6), (7), and (8), and integrating over
the thickness of the object, the scatter reaching a detector
element at a distance r (integrated over &) is

g'(r)=KJ exp[ —u, (t —s) Jexp( — p,@)
s=0

xum04Wm(l)P+(’)1wa
s+g s+g o
(

where K is a global constant encompassing several constant
terms and

@=tan"'[r/(s+g)].

Note that Eq. (9) is a function of the object thickness 7, the
air gap g, and two attenuation coefficients ., and u; which
relate to the quality of the beam. The utility of this equation
when solved numerically will be discussed in detail in a later
section.

Since the function g’ (r) represents the scatter PSF inte-
grated over the radial axis, the area under g'(r) corresponds
to the total scattered energy. Therefore, the constant K is
chosen such that the total area of g’ (r)is equal to the scatter-
to-primary ratio (SPR ) for the particular object thickness
and beam spectra. Thus:

SPR :f g'(rdr, (10)
r=0

SPR _ is defined as the ratio of the scattered energy exiting
the bottom surface of the object to the primary beam energy
exiting the object. From this definition it is clear that SPR
is independent of the air gap.

1l. RESULTS

The functional form of g’ () is compared with the (modi-
fied) scatter PSF, 4 '(r), determined using Monte Carlo
(MC) simulation as described in the companion paper.® The
two functions, g'(r) and h'(r), are compared graphically in
Figs. 2-5. In these figures, the functional dependency of
g'(r) and A’(r) on both air gap and object thickness is
shown. Each curve in these figures represents a different ob-
ject thickness and air gap, and the appropriate values for
both were used in the computation of g'(r). The effective
primary beam attenuation coefficient was calculated in the
MC analysis and for the 100-kVp spectrum u, = 0.2184
cm ™', Least-squares analysis over all 12 distributions (Figs.
2-5) resulted in a best-fit value of z, = 0.1328 cm . The
values u, = 0.2184 and u, = 0.1328 were used in all 12
curves shown in Figs. 2-5. Therefore, the differences in g’ ()
between the figures are solely the result of the thickness and
air gap parameters, ¢t and g. The result supports the appropri-
ateness of the model used in developing g’ (), and also dem-
onstrates the utility of g’(7) [i.e., Eq. (9)] in scatter PSF
research applications. The values of 1, and u, are specific to
the x-ray spectrum, whereas ¢ and g describe the geometrical
configuration of the imaging procedure. The values of u,
and u, for other x-ray spectra are given in Table I. The values
of SPR _ , required to normalize the strength of the PSF, are
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F16. 2. MC modified PSF 4 ‘(r) (solid line) and analytical approximation
g'(r) (dashed line). 5-cm object thickness; (a) O-cm air gap, (b) 2-cm air
gap, (c) 4-cm air gap.

listed in Table II for various object thicknesses and x-ray
spectra.

IV. DISCUSSION

An excellent relationship between the MC determined
PSF h'(r) and the analytically derived function g'(r) is ap-
parent in Figs. 2-5. However, it is also evident that g'(r)
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FIG. 3. MC modified PSF /'(r) (solid line) and analytical approximation
£ (r) (dashed line). 10-cm object thickness; (a) 0-cm air gap, (b) 2-cm air
gap, (c¢) 4-cm air gap.

generally underestimates 4 '(#) at small ». This is probably
due to the fact that Rayleigh scattering was not considered in
the derivation of g'(r), although it is incorporated into the
MC simulation [i.e., into #'(7) ]. Since Rayleigh scattering
consists mostly of small angle scattering, not including it in
g'(r) implies that g'(r) will underestimate the PSF ampli-
tude at small . However, this may not be important in terms
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F1G. 4. MC modified PSF 4 '(r) (solid line) and analytical approximation
g (r) (dashed line). 15-cm object thickness; (a) O-cm air gap, (b) 2-cm air
gap, (c) 4-cm air gap.

of scatter correction, because the majority of the scattered
energy is deposited at greater values of ». Furthermore, the
contribution of Rayleigh scattering, though not negligible, is
small as discussed in the companion paper:

Although g’'(r) was derived based on a single scattering
model, it does an excellent job at approximating 4 ' (r), which
includes multiple scattering effects. This could suggest that
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F1G. 5. MC modified PSF #'(r) (solid line) and analytical approximation
g'(r) (dashed line). 20-cm object thickness; (a) O-cm air gap, (b) 2-cm air
gap, (¢) 4-cm air gap.

multiple scattering contributes little to the PSF, however
evidence shown in the companion paper indicates that this is
not the case, especially with thicker objects. Figure 10 in the
companion paper illustrates that multiple scattered photons
are longer in range, that is, they contribute more to g’'(r) at
larger values of r, than their singly scattered cousins. In
terms of the model used in deriving g’ (7), it is noted that the
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TABLE 1. The values of z, and y, for different x-ray spectra. u, was calcu-
lated from the MC experimental data in Ref. 6. ., was found using least-
squares fitting techniques to the #’(r) distributions measured using MC
simulation (Ref. 6). HVL = half-value layer.

kVp HVL (mm Al) Hpcm” U, cm™

80 1.8 0.2355 0.1399
100 2.3 0.2184 0.1328
120 2.8 0.2079 0.1188

relative range of the function is modulated by the g, term.
The lateral diffusion of scatter can be increased by lowering
U, and can be decreased by increasing y,. Therefore, it is
plausible that although g’ (r) is derived assuming single scat-
tering, the 1, term behaves in rough analogy like a diffusion
coefficient, compensating for the more diffuse multiple scat-
ter. It is noted that since the energy of scattered radiation is
less than or equal to that of the primary, the scatter attenu-
ation coefficient should be greater than the primary attenu-
ation coefficient, contrary to what is observed empirically
(see Table I). Looking at this another way, measured at-
tenuation coefficients decrease as the detection geometry is
shifted from good geometry (narrow beam) to poor geome-
try (broad beam). This is true due to the contribution of
scattered photons to the detector. This is what we are observ-
ing here. The attenuation coefficient of the singly scattered
photons is being reduced due to the contribution of multiply
scattered photons in 4 '(r), the Monte Carlo derived PSF.
Recall that unlike the other input parameters, 1, was deter-
mined using least-squares comparison between g'(r) and
h'(r). This, in effect, forces the analytic model to conform to
the multiple scatter situation through the only degree of free-
dom available — . It is worth noting that for the three
spectra evaluated (80, 100, and 120 kVp), the ratio u,/u o is
constant (within 3%) at 0.59. If, after further investigation
this is found to be generally true, z, can be calculated from
4, and the number of parameters for g’ (7) would be reduced
from four to three.

TABLE II. The values of SPR_ for various object thicknesses and x-ray
spectra. SPR is the ratio between the total scattered energy exiting the
bottom of the object, to the total primary energy exiting the object. The
object was a homogeneous slab of water. These values were determined by
MC simulation, described in a companion paper (Ref. 6).

SPR
Object thickness (cm) 80kVp 100 kVp 120kVp
5 0.62 0.61 0.60
10 1.36 1.36 1.39
15 2.25 2.26 2.37
20 - 335 336 3.62
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Equation (9) can be used to calculate the modified PSF
g’ (7). The PSF g(r) is calculated by multiplying g’(r) by the
factor 1/2mr, which accounts for the radial expansion of
scatter in the two-dimensional case. Because a singularity
occurs in g(r) at r = 0, the scatter contribution at » = 0 can
be accounted for using a dc term. It could be argued that for
qualitative purposes, scatter that reaches the image detector
at r = O provides the same information as primary radiation,
and thus could be considered as primary.

V. CONCLUSIONS

A point spread function for scattered radiation has been
derived from physical principles. The parametric inputs to
the equation are physical in nature, two involving the imag-
ing geometry and two related to the x-ray spectra. Though
the linear attenuation coefficient for primary radiation u,
may be found by measurement or derived from tables, the
value of u; was found empirically by minimizing the squared
error between the analytical PSF and the scatter PSF deter-
mined using Monte Carlo techniques. It was found for the
few spectra analyzed here (three), that to a good approxi-
mation ,/p, = 0.59. Though the analytical derivation con-
sidered only singly scattered photons, it is observed that the
analytic PSF g'(r) very closely approximates the multiple
scattering PSF /' (r) measured by Monte Carlo techniques.
The likely explanation for this is that increasing the value of
M, increases the attenuation of scatter and therefore reduces
its spread. Thus, by reducing x,, the PSF can be spread out.
This also explains why the empirical value of i, is less than
4,, contrary to what would be expected.

The validity of Eq. (9) has been verified only in the range
of parameters described above. While it is anticipated that
Eq. (9) is generally applicable, caution should be used when
extrapolating the model. Further investigation is warranted
in this area.
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